#include "arm/assemble.h" static struct assemble_ctx tdctx_to_actx(const struct transform_dis_ctx *ctx) { int cond; if (ctx->arch.pc_low_bit) { cond = ctx->op >> 28; if (cond == 0xf) cond = 0xe; } else { cond = 0; } return (struct assemble_ctx) { ctx->rewritten_ptr_ptr, ctx->arch.pc_low_bit, cond }; } static int invert_arm_cond(int cc) { if (cc >= 0xe) __builtin_abort(); return cc ^ 1; } static NOINLINE UNUSED void transform_dis_data(struct transform_dis_ctx *ctx, unsigned o0, unsigned o1, unsigned o2, unsigned o3, unsigned out_mask) { #ifdef TRANSFORM_DIS_VERBOSE printf("transform_dis_data: (%p) %x %x %x %x out_mask=%x\n", (void *) ctx->pc, o0, o1, o2, o3, out_mask); #endif /* We only care if at least one op is PC, so quickly test that. */ if (((o0 | o1 | o2 | o3) & 15) != 15) return; unsigned *newval = ctx->newval; newval[0] = o0; newval[1] = o1; newval[2] = o2; newval[3] = o3; void **codep = ctx->rewritten_ptr_ptr; struct assemble_ctx actx = tdctx_to_actx(ctx); /* A few cases: * 1. Move to PC that does not read PC. Probably fine. * 2. Move to PC that does read PC, e.g. 'ldrls pc, [pc, r0, lsl #2]'. * This is different from #4 mainly in that we can't need to do * something like pop {temp, pc}. Not terribly plausible (only likely * in non-position-independent code in ARM mode, and I can't get it to * happen in the first 8 bytes then), but we may as well handle it. * 3. Read of PC that does not read the register(s) it writes, e.g. adr r3, * X. In this case we can use that register as a temporary. * 4. Read of PC that does, or doesn't have any output register, e.g. add * r3, pc. In this case we use the stack because reliably finding a * free register would be work, and might not even be possible (thumb * mov r9, r0; mov r12, r1; ) * the out register is always first. */ uint16_t in_regs = 0; int out_reg = -1; for (int i = 0; i < 4; i++) { if (out_mask & 1 << i) out_reg = newval[i]; else if (newval[i] != null_op) in_regs |= 1 << newval[i]; } if (out_mask & DFLAG_IS_LDRD_STRD) in_regs |= 1 << (newval[0] + 1); uint32_t pc = ctx->pc + (ctx->arch.pc_low_bit ? 4 : 8); int scratch = __builtin_ctz(~(in_regs | (1 << out_reg))); #ifdef TRANSFORM_DIS_VERBOSE printf("transform_dis_data: in_regs=%x out_reg=%d pc=%x scratch=%d\n", in_regs, out_reg, pc, scratch); #endif if (out_reg == 15) { if (in_regs & 1 << 15) return; /* case 1 */ /* case 2 */ PUSHone(actx, scratch); PUSHone(actx, scratch); MOVW_MOVT(actx, scratch, pc); for (int i = 0; i < 4; i++) if (newval[i] == 15) newval[i] = scratch; ctx->write_newop_here = *codep; *codep += ctx->op_size; STRri(actx, scratch, 13, 4); POPmulti(actx, 1 << scratch | 1 << 15); if (actx.cond != 0xe) transform_dis_ret(ctx); } else { if (out_reg != -1 && !(in_regs & 1 << out_reg)) { /* case 3 - ignore scratch */ MOVW_MOVT(actx, out_reg, pc); for (int i = 0; i < 4; i++) if (newval[i] == 15) newval[i] = out_reg; ctx->write_newop_here = *codep; *codep += ctx->op_size; } else { /* case 4 */ PUSHone(actx, scratch); MOVW_MOVT(actx, scratch, pc); for (int i = 0; i < 4; i++) if (newval[i] == 15) newval[i] = scratch; ctx->write_newop_here = *codep; *codep += ctx->op_size; POPone(actx, scratch); } } ctx->modify = true; #ifdef TRANSFORM_DIS_VERBOSE printf("transform_dis_data: => %x %x %x %x\n", newval[0], newval[1], newval[2], newval[3]); #endif } static NOINLINE UNUSED void transform_dis_pcrel(struct transform_dis_ctx *ctx, uintptr_t dpc, unsigned reg, enum pcrel_load_mode load_mode) { #ifdef TRANSFORM_DIS_VERBOSE printf("transform_dis_pcrel: (%p) dpc=%p reg=%x mode=%d\n", (void *) ctx->pc, (void *) dpc, reg, load_mode); #endif ctx->write_newop_here = NULL; struct assemble_ctx actx = tdctx_to_actx(ctx); if (reg == 15) { int scratch = 0; PUSHone(actx, scratch); PUSHone(actx, scratch); MOVW_MOVT(actx, scratch, dpc); if (load_mode != PLM_ADR) LDRxi(actx, scratch, scratch, 0, load_mode); STRri(actx, scratch, 13, 4); POPmulti(actx, 1 << scratch | 1 << 15); transform_dis_ret(ctx); } else { MOVW_MOVT(actx, reg, dpc); if (load_mode != PLM_ADR) LDRxi(actx, reg, reg, 0, load_mode); } } static NOINLINE UNUSED void transform_dis_branch(struct transform_dis_ctx *ctx, uintptr_t dpc, int cc) { #ifdef TRANSFORM_DIS_VERBOSE printf("transform_dis (%p): branch => %p\n", (void *) ctx->pc, (void *) dpc); #endif if (dpc >= ctx->pc_patch_start && dpc < ctx->pc_patch_end) { /* don't support this for now */ /* making the simplifying assumption here that functions will not try * to branch into the middle of an IT block, which is the case where * pc_patch_end changes to include additional instructions (as opposed * to include the end of a partially included instruction, which is * common) */ ctx->err = SUBSTITUTE_ERR_FUNC_BAD_INSN_AT_START; return; } struct assemble_ctx actx = tdctx_to_actx(ctx); ctx->write_newop_here = NULL; if ((cc & CC_ARMCC) == CC_ARMCC) { actx.cond = invert_arm_cond(cc & 0xf); Bccrel(actx, 8); } else if ((cc & CC_CBXZ) == CC_CBXZ) { ctx->modify = true; ctx->newval[0] = 2+8; ctx->newval[1] = 1; /* do invert */ void **codep = ctx->rewritten_ptr_ptr; ctx->write_newop_here = *codep; *codep += 2; } actx.cond = 0xe; LDR_PC(actx, dpc | ctx->arch.pc_low_bit); } static void transform_dis_pre_dis(struct transform_dis_ctx *ctx) { /* for simplicity we turn IT into a series of branches for each * instruction, so... */ if (ctx->arch.it_conds[0] != 0xe) { ctx->arch.bccrel_bits = invert_arm_cond(ctx->arch.it_conds[0]); ctx->arch.bccrel_p = *ctx->rewritten_ptr_ptr; *ctx->rewritten_ptr_ptr += 2; } else { ctx->arch.bccrel_p = NULL; } } static void transform_dis_post_dis(struct transform_dis_ctx *ctx) { if (ctx->arch.bccrel_p) { struct assemble_ctx actx = {&ctx->arch.bccrel_p, /*thumb*/ true, ctx->arch.bccrel_bits}; Bccrel(actx, *ctx->rewritten_ptr_ptr - ctx->arch.bccrel_p); } ctx->force_keep_transforming = ctx->arch.it_conds[0] != 0xe; }